

LottoDeal

Team Leader: Prateek Swain (prateeks@princeton.edu)
Team Members:

Lucas Irvine (lirvine@princeton.edu)
Steven Takeshita (st14@princeton.edu)
Antony Toron (atoron@princeton.edu)
Dominic Whyte (dwhyte@princeton.edu)

OVERVIEW

Elevator Pitch
A revolutionary, new buy-sell platform where we match sellers looking to raffle off their item with
hundreds of interested micro-bidders. No more indefinite waiting periods, no more hassle. An
opportunity to buy everything you desire for a fraction of its price, all guilt free!

Investor Pitch
LottoDeal connects buyers and sellers in a unique marketplace model. Instead of a traditional
e-commerce model, the seller puts down their item as a lottery which anyone can participate in
for a fraction of the original product price! Winning a sleek new $250 Apple Watch is as simple
as putting only $2 down on our webapp for a realistic chance to be the next proud owner of the
Apple Watch.

We are completely transparent about our lotteries by clearly displaying the chances of winning
each item being sold. Buyers and sellers also receive complete security since items are not
given away until the original target price of the seller is reached. If a goal is not reached, all
users who bid on the item get their money back. Our app acts as the intermediary for payments,
listing items, security, and all communication between the buyer and the seller.

We utilize the psychology behind the popular state-run lotteries and apply it to a buy-sell
platform model to compete with the traditional e-commerce incumbents. There are a plethora of
products which have low turnover rates and are listed for sale for long periods of time. This
especially applies to luxury goods since their target customer base is much smaller. By
auctioning off such items in a lottery, we include buyers who wish to bid smaller sums of money
for a chance to acquire expensive items. LottoDeal thus connects all items with a much larger
consumer audience and helps people acquire products they desire without breaking their bank.
You don’t need to eat just ramen noodles for three months to afford that vacation in Jamaica.
Come put a few dollars on the platform, and with a little luck you’ll be sipping pina coladas in the
tropical beach by next week.

mailto:st14@princeton.edu
mailto:dwhyte@princeton.edu
mailto:toron@princeton.edu
mailto:lirvine@princeton.edu

Requirements and Target Audiences

Problem
Costly products are often very desirable, but can be too expensive to justify purchasing. For
example, for college students, these items can range anywhere from bicycles to dinners at
upscale restaurants to even a non required reading for a class (speaking from our personal
experiences).

Most products thus have a large set of potential buyers who do not wish to spend the full retail
cost of it, but still would like to own the product. Because of this, a large untapped audience
exists that is not being reached out to for many products. The only existing solutions for
exchange of these items include micro-bidding sites and traditional marketplace models. More
details about both of these alternative platforms and their associated problems are detailed
below:

Micro-bidding sites: Platforms that have timed auctions and allow you to buy items by bidding
small amounts on them (eg. quibids.com)
Problem: The auctions are time-sensitive and non-transparent. These sites often act as retailers
who try to auction off their items for a profit by raffling them off. Unfortunately, users do not know
the number of bidders, their chances of winning, and other pieces of information required to
establish trust between the model and users. In extreme cases these sites scam their users.

Buy-Sell Platforms: Platforms, such as Craigslist or eBay, that connect buyers and sellers in a
traditional online marketplace model.
Problem: When dealing specifically with high value items (luxury goods, niche products, most
products with low turnover rates etc.), long waiting periods for sellers and very little interest from
buyers lead to a poorly functioning marketplace for these items. Sellers often do not find a buyer
for their product, and therefore try to either find a new marketplace or sell their product at a
reduced price.

Intended Users
Our intended users include anyone with a desire to buy or sell an item. Ideally, this includes all
geographic locations and demographic groups. However, because of its potentially broad user
base, we have identified the most optimum plan of implementation as the following:
Phase 1: Princeton University Community
Phase 2: Other College Campuses
Phase 3: North America
Phase 4: Rest of the world

Functionality

Use Case scenarios:

Seller:

1. The seller logs onto the web application using their facebook (other login methods can
be added later)

2. The seller uploads a picture of the product they wish to sell, as well as a description, a
target price, and a date by which the target price must be met. The seller should also list
the estimated time and price of shipping for the product based on geographic location.
Other potential options for the seller include the max bid size and the max number of
bids each buyer can make.

3. After the seller inputs this information, the product becomes visible to buyers
4. There are now two possible outcomes:

a. If the target price is met, the raffle will take place and the seller will receive a
notification that their target price has been met and a raffle for their item has
occurred. The app will notify the seller and the winner of the raffle, and allow for
direct communication between them so that shipping information and any
concerns (e.g. the product did not arrive) can be discussed.

b. If the target price is not met, all money will be refunded to the bidders. The
product will no longer be listed on the site, unless the seller tries to resell the item
by going back to step 2.

Buyer:

1. The buyer logs onto the web application using their facebook (other login methods can
be added later)

2. The buyer then sees a list of categories of products. The buyer can search through these
categories, as well as by price of bid, chance of winning, and product name.

3. The buyer will then see a list of pictures of items that fit the given criteria. Above the
picture will be the product’s name, and below the picture will be the time left to bid, and
price of each bid and associated chance of winning the product. By clicking a “bid
button,” the buyer pays the listed amount and receives a notification that their bid has
been accepted or rejected.

4. By clicking on the picture of a product, the buyer will be able to see more detailed
information including a description of the product, estimated shipping times, the condition
of the product (for used items), etc.

5. After the target goal is reached or the product deadline is reached, either a winner is
chosen or all money is refunded to the bidders (as described in the seller’s use case).

6. If the buyer has won a given product, they will receive a notification that they won.

General:

Our page will also have the following content:

1. An about page describing all 5 of us and a way to contact the company
2. A recent winners page listing the products that were recently raffled off as well as the

winners of those products

Design

The app will be focused on having a clear distinction of the three-tier system separation,
and incorporation of the MEAN stack.

First-tier: Front-end

The first layer will be the client side or front-facing web application. The goal is to
incorporate AngularJS onto the web application, allowing for easily updated DOM elements, and
dynamically changing data displayed to the users. AngularJS’s strengths lie in its ability to allow
instant updates of the DOM without refreshing the page, allowing for a smooth UI and minimal
effort on the user side in terms of viewing the information presented (as well as easy integration
with server-side technologies, as will be described below). A simple use case of this can be
seen where users post a new item to be sold, the user will instantly see this new post regardless
of having to refresh the page. They will also be able to see real-time purchases of raffle tickets
on their items - a useful tool for any user on our application.

Other potential libraries/frameworks in this layer will be the following technologies:
Bootstrap, Jquery, Font libraries. Though this is a web-based application, another goal will be to
make this mobile-friendly to allow people to view the site on any device (which Bootstrap can
help do). Jquery is another library that is very useful to accomplish similar things that AngularJS
does. Jquery is light, and it allows for quick coding in terms of selecting elements in the DOM,
attaching listeners to certain things on your page, and also Ajax integration. Using this on top of
AngularJS is useful, because many things that AngularJS does are abstracted away from the
user, making it difficult to debug certain important features. This is when JQuery can become
useful to provide more control over the DOM and particular features due to its nature of being a
library as opposed to a framework. Both Jquery and AngularJS have widespread support, as
well, making the two together a good combination for making sure that all features will be
working smoothly. The last category - Font libraries - is a blanket term to describe all of the
different fonts and styling we aim to find to create an appealing UI and graphical interface for
users to work with on the website.

Second-tier: Server

The next abstracted layer is the middle-tier, server-side. We plan to program our server
in NodeJS and ExpressJS/Express, because these technologies provide a simple and easy way

to set up a web-service as opposed to building something in a more hefty software like Java.
There is also very handy integration of NodeJS into many modern databases (hence the
incorporation of MongoDB into MEAN). By using NodeJS, this frees up more time to focus on
front-end development, because of the speed that a NodeJS application can be created with.
The idea with this layer is to create a very modular way to access information from the database
to send back to the frontend. Example use: a user is trying to put up a new item to sell, so they
create the request on the front-end, which then conveniently in the javascript (due to to the
AngularJS integration with Ajax) sends an HTTP request to this running server that has a
modular method for accepting certain types of data, without having to talk to the database
directly.

Another important part of this layer will be Stripe. Stripe is an api that allows for easier
payment and transaction processing for apps. It has an extensive API reference and existing
infrastructure to be used in NodeJS. This is another reason why NodeJS is useful in this layer:
there are multiple libraries and apis supported in NodeJS, which allows for quick integration of
things like Stripe.

Third-tier: Database

The final layer is the database, which we plan using MongoDB for. The reasoning behind
this is that NodeJS is well adapted to working with Mongo servers, allowing for quicker
development and creation of the product. Additionally, if we think about the data that will be
used for this application, it can be seen that many of the items we wish to save may not be
structured (a consequence of using a REST api in Node and JSON objects in that layer). Some
of this type of data includes posts: one person raffling off an item might want to have a different
configuration of settings for that item than another user, which might become too complicated
working with MySQL or other non-relational databases. During the creation of this project and in
the long term, however, we will see what type of database is best for the type of data that is
decided upon in the final product (which could result in use of a MySQL-type database).

Expected Roles:
Web-development:

HTML and CSS focus (AngularJS, Bootstrap, other styling libraries)
Javascript Focus (AngularJS, JQuery, Ajax)
Combination of the above two
Design (planning of UI/UX, and creation of logos and branding - Photoshop, Illustrator)

Server-side:
Setup of REST Api to pick up requests from the front-end (NodeJS, Express)
Setup of Stripe API to process the transactions (NodeJS, Express)
Hosting of the server on either Princeton servers, or AWS, or some other hosting service

Database:
Concrete contract development on the type of data that will be processed and stored,

and consequently the correct database to use.
NodeJS queries and pushes to the database (in the case that a non-relational database

is used as expected, like Mongo).

Research into where to run the database (AWS, locally for the duration, etc.)

Timeline

March 3, 2017
Survey classmates to measure product demand and interest.

March 7, 2012
Meeting with Professor Kernighan, obtain project approval.

March 24, 2017
Develop a structured contract between the different tiers of the application (API, data processed
in database, etc.) and assign roles to each member of the team, based on interest and
expertise.

March 31, 2017
Have a working prototype of the payment system (likely using Stripe), to eliminate the
uncertainties associated with implementing delayed transactions. Decide on database layout
and begin implementation of MVP API functions. On the front end, have a full drawn-out layout
of the MVP design and begin working on implementation.

April 7, 2017
Test working server, which should implement the functions necessary for adding an item for
sale, bidding on an item, and performing the lottery (including working database). Front end
should be functional on large screens, work now on mobile optimization.

April 14, 2017
Project Prototype. Minimal Viable Product prototype test - By the 14th, have an initial working
version which can handle the baseline functionality, ie., add an item for sale, bid on an item, and
perform the lottery (including thorough documentation). Frontend must allow for this
functionality. Determine bugs, areas for improvement in UI and decide what areas we need to
focus on most before the April 24th launch.

April 18, 2017
Heavily polish the MVP by the 18th, and begin adding non-baseline features, such as displaying
lottery odds to users and newsfeed, subject to pivot.

April 24th
Launch. Release the latest version for student use, by marketing on campus and posting to
listservers. Goal will be to auction off 5 items to students in the first 10 days. In the next week,
work on adding any key supplementary features and on bug fixes based on student feedback.

April 28, 2017
Alpha Test. Finalize adding supplementary features, and do stress as well as corner testing.

May 4-5, 2017
Beta test. No more feature adding - spend these days rigorously testing the existing product.

May 8-10, 2017
Demo day.

May 14, 2017 (midnight)
Final submission for Dean's Date.

Risks and Outcomes

1. Buyer/Seller Security. One key area of potential risk is performing transactions after the
item lottery price has been reached, ie. several days after a user inputs their payment
information for the sale. We have experience using the Stripe API for immediate
transactions, however there is a lot more uncertainty in storing the payment tokens for
use at a later date. For example, there are edge cases such as: What if a user’s
payment information becomes invalid in the days before the transaction goes through?
How would the selling price of an item be affected by a user providing payment
information has been invalidated? If instead we perform the transactions immediately,
how can we reliable return the funds to users if the lottery doesn’t reach its goal? (and
not be subject to the 2.9% fee that Stripe imposes?).

2. Customer Satisfaction. We need to develop a system for transferring purchased
products from the seller to the buyer, in the case of a successful lottery. This includes
risks such as: What if the item being sold was unjustly represented in the description (eg.
wear and tear)?

3. Lack of clarity on positioning items as lotteries: We don’t have any data on what the
best way to break down the price of an item into bids for users. Should bids solely
depend on no. of bids being circulated (ie - should a bid price be broken down as a fixed
multiple of the total price to keep chances of winning constant) or should there be a
range of values which would be optimum for get more users to bid (we assume it would
range between $0.1 to $10). Not knowing how to break down an item into a lottery could
lead to items not being auctioned off and thus lack of any benefits.

4. Legal issues: We don’t expect this to be an issue, since we will be launching solely at
Princeton and dealing with items of small economic value, however in the long term we
will have to consider the legal ramifications of selling items in this style, and the laws that
apply to a business in this new business. Since this is a relatively uncharted area, a
scaling business based on this model would likely face similar challenges to Airbnb and
Uber/Lyft, pioneers in their respective industries.

5. Learning New Programming Languages: To learn the most from this experience, we
will task each member with a part of the project that they have never worked with before.
Therefore, we will all be able to learn about new technologies and develop our skills
quickly. However, the problem is that we will definitely run into bugs all the time as we try
to learn. This should not be a big problem though as Antony Toron has much more
experience than us in Web Technologies and will be able to walk us through when we
get stuck. Also, our tight timeline will allow for plenty of time to pivot in case we are not
finding it feasible to reach our initial goals.

